Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

37 Citas (Scopus)

Resumen

This article compares four non-linear forecasting methods: multiplicative seasonal ARIMA, unobserved components (UC), wavelet-based and support vector machines (SVM). Whereas the first two methods are well known in the time series field, the other two rely on recently developed mathematical techniques. Based on forecasting accuracy and encompassing tests applied to shipments data of the U.S. metal and material manufacturing industry for 1958-2000, we conclude that that these two novel forecast techniques can either outperform the traditional ones or provide them with extra forecast information. In particular, based on the Granger-Newbold test, it appears that wavelets may be a promising new technique.

Idioma originalInglés
Páginas (desde-hasta)80-89
Número de páginas10
PublicaciónResources Policy
Volumen32
N.º1-2
DOI
EstadoPublicada - mar. 2007

Huella

Profundice en los temas de investigación de 'Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry'. En conjunto forman una huella única.

Citar esto