Universal formula for the holographic speed of sound

Andrés Anabalón, Tomás Andrade, Dumitru Astefanesei, Robert Mann

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

16 Citas (Scopus)

Resumen

We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner–Freedman window and derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the scalar field. As an example, we numerically construct the most general class of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity that preserves the SO(3)×SO(3) R-symmetry group of the gauge theory. For this particular family of solutions, we find that the speed of sound exceeds the conformal value. From a phenomenological point of view, the fact that the conformal bound can be violated by choosing the right mixed boundary conditions is relevant for the existence of neutron stars with a certain mass-size relationship for which a large value of the speed of sound codifies a stiff equation of state. In the way, we also shed light on a puzzle regarding the appearance of the scalar charges in the first law. Finally, we generalize the formula of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the Breitenlohner–Freedman window.

Idioma originalInglés
Páginas (desde-hasta)547-552
Número de páginas6
PublicaciónPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volumen781
DOI
EstadoPublicada - 10 jun. 2018
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Universal formula for the holographic speed of sound'. En conjunto forman una huella única.

Citar esto