Resumen
We investigate the relationship between the univalence of f and of h in the decomposition f = h + over(g, -) of a sense-preserving harmonic mapping defined in the unit disk D ⊂ C. Among other results, we determine the holomorphic univalent maps h for which there exists c > 0 such that every harmonic mapping of the form f = h + over(g, -) with | g′ | < c | h′ | is univalent. The notion of a linearly connected domain appears in our study in a relevant way.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 1189-1194 |
Número de páginas | 6 |
Publicación | Journal of Mathematical Analysis and Applications |
Volumen | 332 |
N.º | 2 |
DOI | |
Estado | Publicada - 15 ago. 2007 |