Unified representation and lifted sampling for generative models of social networks

Pablo Robles-Granda, Sebastian Moreno, Jennifer Neville

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Statistical models of network structure are widely used in network science to reason about the properties of complex systems-where the nodes and edges represent entities and their relationships. Recently, a number of generative network models (GNM) have been developed that accurately capture characteristics of real world networks, but since they are typically defined in a procedural manner, it is difficult to identify commonalities in their structure. Moreover, procedural definitions make it difficult to develop statistical sampling algorithms that are both efficient and correct. In this paper, we identify a family of GNMs that share a common latent structure and create a Bayesian network (BN) representation that captures their common form. We show how to reduce two existing GNMs to this representation. Then, using the BN representation we develop a generalized, efficient, and provably correct, sampling method that exploits parametric symmetries and deterministic context-specific dependence. Finally, we use the new representation to design a novel GNM and evaluate it empirically.

Idioma originalInglés
Título de la publicación alojada26th International Joint Conference on Artificial Intelligence, IJCAI 2017
EditoresCarles Sierra
EditorialInternational Joint Conferences on Artificial Intelligence
Páginas3798-3806
Número de páginas9
ISBN (versión digital)9780999241103
DOI
EstadoPublicada - 2017
Publicado de forma externa
Evento26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia
Duración: 19 ago. 201725 ago. 2017

Serie de la publicación

NombreIJCAI International Joint Conference on Artificial Intelligence
Volumen0
ISSN (versión impresa)1045-0823

Conferencia

Conferencia26th International Joint Conference on Artificial Intelligence, IJCAI 2017
País/TerritorioAustralia
CiudadMelbourne
Período19/08/1725/08/17

Huella

Profundice en los temas de investigación de 'Unified representation and lifted sampling for generative models of social networks'. En conjunto forman una huella única.

Citar esto