Uncertainty quantification for multigroup diffusion equations using sparse tensor approximations

Consuelo Fuenzalida, Carlos Jerez-Hanckes, Ryan G. McClarren

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We develop a novel method to compute first and second order statistical moments of the neutron kinetic density inside a nuclear system by solving the energy-dependent neutron diffusion equation. Randomness comes from the lack of precise knowledge of external sources as well as of the interaction parameters, known as cross sections. Thus, the density is itself a random variable. As Monte Carlo simulations entail intense computational work, we are interested in deterministic approaches to quantify uncertainties. By assuming as given the first and second statistical moments of the excitation terms, a sparse tensor finite element approximation of the first two statistical moments of the dependent variables for each energy group can be efficiently computed in one run. Numerical experiments provided validate our derived convergence rates and point to further research avenues.

Idioma originalInglés
Páginas (desde-hasta)B545-B575
PublicaciónSIAM Journal on Scientific Computing
Volumen41
N.º3
DOI
EstadoPublicada - 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Uncertainty quantification for multigroup diffusion equations using sparse tensor approximations'. En conjunto forman una huella única.

Citar esto