Two novel gradient methods with optimal step sizes

Harry Oviedo, Oscar Dalmau, Rafael Herrera

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

In this work we introduce two new Barzilai and Borwein-like steps sizes for the clas- sical gradient method for strictly convex quadratic optimization problems. The proposed step sizes employ second-order information in order to obtain faster gradient-type meth- ods. Both step sizes are derived from two unconstrained optimization models that involve approximate information of the Hessian of the objective function. A convergence anal- ysis of the proposed algorithm is provided. Some numerical experiments are performed in order to compare the efficiency and effectiveness of the proposed methods with similar methods in the literature. Experimentally, it is observed that our proposals accelerate the gradient method at nearly no extra computational cost, which makes our proposal a good alternative to solve large-scale problems.

Idioma originalInglés
Páginas (desde-hasta)375-391
Número de páginas17
PublicaciónJournal of Computational Mathematics
Volumen39
N.º3
DOI
EstadoPublicada - abr. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Two novel gradient methods with optimal step sizes'. En conjunto forman una huella única.

Citar esto