Two adaptive scaled gradient projection methods for Stiefel manifold constrained optimization

Harry Oviedo, Oscar Dalmau, Hugo Lara

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)


This article is concerned with the problem of minimizing a smooth function over the Stiefel manifold. In order to address this problem, we introduce two adaptive scaled gradient projection methods that incorporate scaling matrices that depend on the step-size and a parameter that controls the search direction. These iterative algorithms use a projection operator based on the QR factorization to preserve the feasibility in each iteration. However, for some particular cases, the proposals do not require the use of any projection operator. In addition, we consider a Barzilai and Borwein-like step-size combined with the Zhang–Hager nonmonotone line-search technique in order to accelerate the convergence of the proposed procedures. We proved the global convergence for these schemes, and we evaluate their effectiveness and efficiency through an extensive computational study, comparing our approaches with other state-of-the-art gradient-type algorithms.

Idioma originalInglés
Páginas (desde-hasta)1107-1127
Número de páginas21
PublicaciónNumerical Algorithms
EstadoPublicada - jul. 2021
Publicado de forma externa


Profundice en los temas de investigación de 'Two adaptive scaled gradient projection methods for Stiefel manifold constrained optimization'. En conjunto forman una huella única.

Citar esto