TY - JOUR
T1 - The Similar Seven
T2 - A Set of Very Alike Exoplanets to Test Correlations between System Parameters and Atmospheric Properties
AU - McGruder, Chima D.
AU - López-Morales, Mercedes
AU - Brahm, Rafael
AU - Jordán, Andrés
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/2/1
Y1 - 2023/2/1
N2 - Studies of exoplanetary atmospheres have found no definite correlations between observed high-altitude aerosols and other system parameters. This could be, in part, because of the lack of homogeneous exoplanet samples for which specific parameters can be isolated and inspected. Here, we present a set of seven exoplanets with very similar system parameters. We analyze existing photometric time series, Gaia parallax, and high-resolution spectroscopic data to produce a new set of homogeneous stellar, planetary, and orbital parameters for these systems. With this, we confirm that most measured parameters for all systems are very similar, except for the host stars’ metallicities and possibly high-energy irradiation levels, which require UV and X-ray observations to constrain. From the sample, WASP-6b, WASP-96b, and WASP-110b have observed transmission spectra that we use to estimate their aerosol coverage levels using the Na i doublet 5892.9 Å. We find a tentative correlation between the metallicity of the host stars and the planetary aerosol levels. The trend we find with stellar metallicity can be tested by observing transmission spectra of the remaining planets in the sample. Based on our prediction, WASP-25b and WASP-55b should have higher levels of aerosols than WASP-124b and HATS-29b. Finally, we highlight how targeted surveys of alike planets similar to the ones presented here might prove key for identifying driving factors for atmospheric properties of exoplanets in the future and could be used as a sample selection criterion for future observations with, e.g., JWST, ARIEL, and the next generation of ground-based telescopes.
AB - Studies of exoplanetary atmospheres have found no definite correlations between observed high-altitude aerosols and other system parameters. This could be, in part, because of the lack of homogeneous exoplanet samples for which specific parameters can be isolated and inspected. Here, we present a set of seven exoplanets with very similar system parameters. We analyze existing photometric time series, Gaia parallax, and high-resolution spectroscopic data to produce a new set of homogeneous stellar, planetary, and orbital parameters for these systems. With this, we confirm that most measured parameters for all systems are very similar, except for the host stars’ metallicities and possibly high-energy irradiation levels, which require UV and X-ray observations to constrain. From the sample, WASP-6b, WASP-96b, and WASP-110b have observed transmission spectra that we use to estimate their aerosol coverage levels using the Na i doublet 5892.9 Å. We find a tentative correlation between the metallicity of the host stars and the planetary aerosol levels. The trend we find with stellar metallicity can be tested by observing transmission spectra of the remaining planets in the sample. Based on our prediction, WASP-25b and WASP-55b should have higher levels of aerosols than WASP-124b and HATS-29b. Finally, we highlight how targeted surveys of alike planets similar to the ones presented here might prove key for identifying driving factors for atmospheric properties of exoplanets in the future and could be used as a sample selection criterion for future observations with, e.g., JWST, ARIEL, and the next generation of ground-based telescopes.
UR - http://www.scopus.com/inward/record.url?scp=85149052788&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/acb154
DO - 10.3847/2041-8213/acb154
M3 - Article
AN - SCOPUS:85149052788
SN - 2041-8205
VL - 944
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L56
ER -