Resumen
We prove that the one-site distribution of Gibbs states (for any finite spin set S) on the Bethe lattice is given by the points satisfying the equation π=T2π, where T=h·A·φ{symbol}, with φ{symbol}(x)=x(q-1/q, h(x)=(x∥x∥q)q, A=(a(r, s):r, s∈S), and {Mathematical expression} We also show that for A a symmetric, irreducible operator the nonlinear evolution on probability vectors x(n+1)=Ax(n)p∥Ax(n)p∥1 with p>0 has limit points ξ of period≤2. We show that A positive definite implies limit points are fixed points that satisfy the equation Aξp=λξ. The main tool is the construction of a Liapunov functional by means of convex analysis techniques.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 267-285 |
Número de páginas | 19 |
Publicación | Journal of Statistical Physics |
Volumen | 52 |
N.º | 1-2 |
DOI | |
Estado | Publicada - jul. 1988 |
Publicado de forma externa | Sí |