Symmetrizable Boolean networks

Juan A. Aledo, Eric Goles, Marco Montalva-Medel, Pedro Montealegre, Jose C. Valverde

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

In this work, we provide a procedure that allows us to transform certain kinds of deterministic Boolean networks on minterm or maxterm functions into symmetric ones, so inferring that such symmetrizable networks can present only periodic points of periods 1 or 2. In particular, we deal with generalized parallel (or synchronous) dynamical systems (GPDS) over undirected graphs, i.e., discrete parallel dynamical systems over undirected graphs where some of the self-loops may not appear. We also study the class of anti-symmetric GPDS (which are non-symmetrizable), proving that their periodic orbits have period 4. In addition, we introduce a class of non-symmetrizable systems which admit periodic orbits with arbitrary large periods.

Idioma originalInglés
Páginas (desde-hasta)787-804
Número de páginas18
PublicaciónInformation Sciences
Volumen626
DOI
EstadoPublicada - may. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Symmetrizable Boolean networks'. En conjunto forman una huella única.

Citar esto