Symmetric discrete universal neural networks

Eric Goles, Martín Matamala

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Given the class of symmetric discrete weight neural networks with finite state set {0,1}, we prove that there exist iteration modes under these networks which allow to simulate in linear space arbitrary neural networks (non-necessarily symmetric). As a particular result we prove that an arbitrary symmetric neural network can be simulated by a symmetric one iterated sequentially, with some negative diagonal weights. Further, considering only the synchronous update we prove that symmetric neural networks with one refractory state are able to simulate arbitrary neural networks.

Idioma originalInglés
Páginas (desde-hasta)405-416
Número de páginas12
PublicaciónTheoretical Computer Science
Volumen168
N.º2
DOI
EstadoPublicada - 20 nov. 1996
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Symmetric discrete universal neural networks'. En conjunto forman una huella única.

Citar esto