Surface Green's Function of a Piezoelectric Half-Space

Vincent Laude, Carlos F. Jerez-Hanckes, Sylvain Ballandras

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

27 Citas (Scopus)

Resumen

The computation of the two-dimensional harmonic spatial-domain Green's function at the surface of a piezoelectric half-space is discussed. Starting from the known form of the Green's function expressed in the spectral domain, the singular contributions are isolated and treated separately. It is found that the surface acoustic wave contributions (i.e., poles in the spectral Green's function) give rise to an anisotropic generalization of the Hankel function H(2)0, the spatial Green's function for the scalar twodimensional wave equation. The asymptotic behavior at infinity and at the origin (for the electrostatic contribution) also are explicitly treated. The remaining nonsingular part of the spectral Green's function is obtained numerically by a combination of fast Fourier transform and quadrature. Illustrations are given in the case of a substrate of Y-cut lithium niobate.

Idioma originalInglés
Páginas (desde-hasta)420-428
Número de páginas9
PublicaciónIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Volumen53
N.º2
DOI
EstadoPublicada - feb. 2006
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Surface Green's Function of a Piezoelectric Half-Space'. En conjunto forman una huella única.

Citar esto