Sunlight-Induced photochemical synthesis of Au nanodots on α-Fe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties

G. Bharath, Shoaib Anwer, R. V. Mangalaraja, Emad Alhseinat, Fawzi Banat, N. Ponpandian

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

99 Citas (Scopus)

Resumen

In this present study, we report the synthesis of Au nanodots on α-Fe2O3reduced graphene oxide (RGO) based hetero-photocatalytic nanohybrids through a chlorophyll mediated photochemical synthesis. In this process, chlorophyll induces a rapid reduction (30 min) of Au3+ ions to Au° metallic nanodots on α-Fe2O3RGO surface under sunlight irradiation. The nucleation growth process, photo-induced electron-transfer mechanism and physico-chemical properties of the Auα-Fe2O3RGO ternary nanocomposites were systematically studied with various analytical techniques. This novel photochemical synthesis process is a cost-effective, convenient, surfactant-less, and scalable method. Moreover, the prepared ternary nanocomposites enhanced catalytic activity as compared to pure α-Fe2O3 and α-Fe2O3RGO. The advantages and synergistic effect of Auα-Fe2O3RGO exhibit, (i) a broader range of visible-light absorption due to visible light band gap of α-Fe2O3, (ii) lower recombination possibility of photo-generated electrons and holes due to effect of Au and (iii) faster electron transfer due to higher conductivity of RGO. Therefore, the prepared Auα-Fe2O3RGO hetero-photocatalytic nanohybrids exhibited a remarkable photocatalytic activity, thus enabling potential active hetero-photocatalyst for industrial and environmental applications.

Idioma originalInglés
Número de artículo5718
PublicaciónScientific Reports
Volumen8
N.º1
DOI
EstadoPublicada - 1 dic. 2018
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Sunlight-Induced photochemical synthesis of Au nanodots on α-Fe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties'. En conjunto forman una huella única.

Citar esto