Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization

R. Cominetti, J. Peypouquet, S. Sorin

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

55 Citas (Scopus)

Resumen

We consider the Tikhonov-like dynamics - over(u, ̇) (t) ∈ A (u (t)) + ε (t) u (t) where A is a maximal monotone operator on a Hilbert space and the parameter function ε (t) tends to 0 as t → ∞ with ∫0 ε (t) d t = ∞. When A is the subdifferential of a closed proper convex function f, we establish strong convergence of u (t) towards the least-norm minimizer of f. In the general case we prove strong convergence towards the least-norm point in A-1 (0) provided that the function ε (t) has bounded variation, and provide a counterexample when this property fails.

Idioma originalInglés
Páginas (desde-hasta)3753-3763
Número de páginas11
PublicaciónJournal of Differential Equations
Volumen245
N.º12
DOI
EstadoPublicada - 15 dic. 2008

Huella

Profundice en los temas de investigación de 'Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization'. En conjunto forman una huella única.

Citar esto