Stochastic constraints and variance reduction techniques

Tito Homem-De-Mello, Güzin Bayraksan

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

10 Citas (Scopus)

Resumen

We provide an overview of two select topics in Monte Carlo simulationbased methods for stochastic optimization: problems with stochastic constraints and variance reduction techniques. While Monte Carlo simulation-based methods have been successfully used for stochastic optimization problems with deterministic constraints, there is a growing body of work on its use for problems with stochastic constraints. The presence of stochastic constraints brings new challenges in ensuring and testing optimality, allocating sample sizes, etc., especially due to difficulties in determining feasibility. We review results for general stochastic constraints and also discuss special cases such as probabilistic and stochastic dominance constraints. Next, we review the use of variance reduction techniques (VRT) in a stochastic optimization setting. While this is a well-studied topic in statistics and simulation, the use of VRT in stochastic optimization requires a more thorough analysis. We discuss asymptotic properties of the resulting approximations and their use within Monte Carlo simulation-based solution methods.

Idioma originalInglés
Título de la publicación alojadaInternational Series in Operations Research and Management Science
EditorialSpringer New York LLC
Páginas245-276
Número de páginas32
DOI
EstadoPublicada - 2015
Publicado de forma externa

Serie de la publicación

NombreInternational Series in Operations Research and Management Science
Volumen216
ISSN (versión impresa)0884-8289

Huella

Profundice en los temas de investigación de 'Stochastic constraints and variance reduction techniques'. En conjunto forman una huella única.

Citar esto