Spectral residual method for nonlinear equations on Riemannian manifolds

Harry Oviedo, Hugo Lara

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper, the spectral algorithm for nonlinear equations (SANE) is adapted to the problem of finding a zero of a given tangent vector field on a Riemannian manifold. The generalized version of SANE uses, in a systematic way, the tangent vector field as a search direction and a continuous real-valued function that adapts this direction and ensures that it verifies a descent condition for an associated merit function. To speed up the convergence of the proposed method, we incorporate a Riemannian adaptive spectral parameter in combination with a non-monotone globalization technique. The global convergence of the proposed procedure is established under some standard assumptions. Numerical results indicate that our algorithm is very effective and efficient solving tangent vector field on different Riemannian manifolds and competes favorably with a Polak–Ribiére–Polyak method recently published and other methods existing in the literature.

Idioma originalInglés
Número de artículo238
PublicaciónComputational and Applied Mathematics
Volumen40
N.º7
DOI
EstadoPublicada - oct. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Spectral residual method for nonlinear equations on Riemannian manifolds'. En conjunto forman una huella única.

Citar esto