Spectral galerkin method for solving helmholtz and laplace dirichlet problems on multiple open arcs

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

We present a spectral numerical scheme for solving Helmholtz and Laplace problems with Dirichlet boundary conditions on an unbounded non-Lipschitz domain ℝ2∖ Γ ¯, where Γ is a finite collection of open arcs. Through an indirect method, a first kind formulation is derived whose variational form is discretized using weighted Chebyshev polynomials. This choice of basis allows for exponential convergence rates under smoothness assumptions. Moreover, by implementing a simple compression algorithm, we are able to efficiently account for large numbers of arcs as well as a wide wavenumber range.

Idioma originalInglés
Título de la publicación alojadaSpectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 - Selected Papers from the ICOSAHOM Conference
EditoresSpencer J. Sherwin, Joaquim Peiró, Peter E. Vincent, David Moxey, Christoph Schwab
EditorialSpringer
Páginas383-393
Número de páginas11
ISBN (versión impresa)9783030396466
DOI
EstadoPublicada - 2020
Publicado de forma externa
Evento12th International Conference on Spectral and High-Order Methods, ICOSAHOM 2018 - London, Reino Unido
Duración: 9 jul. 201813 jul. 2018

Serie de la publicación

NombreLecture Notes in Computational Science and Engineering
Volumen134
ISSN (versión impresa)1439-7358
ISSN (versión digital)2197-7100

Conferencia

Conferencia12th International Conference on Spectral and High-Order Methods, ICOSAHOM 2018
País/TerritorioReino Unido
CiudadLondon
Período9/07/1813/07/18

Huella

Profundice en los temas de investigación de 'Spectral galerkin method for solving helmholtz and laplace dirichlet problems on multiple open arcs'. En conjunto forman una huella única.

Citar esto