Sharp convergence rates for averaged nonexpansive maps

Mario Bravo, Roberto Cominetti

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

We establish sharp estimates for the convergence rate of the Kranosel’skiĭ–Mann fixed point iteration in general normed spaces, and we use them to show that the optimal constant of asymptotic regularity is exactly 1/π. To this end we consider a nested family of optimal transport problems that provide a recursive bound for the distance between the iterates. We show that these bounds are tight by building a nonexpansive map T: [0, 1]N → [0, 1]N that attains them with equality, settling a conjecture by Baillon and Bruck. The recursive bounds are in turn reinterpreted as absorption probabilities for an underlying Markov chain which is used to establish the tightness of the constant 1/π.

Idioma originalInglés
Páginas (desde-hasta)163-188
Número de páginas26
PublicaciónIsrael Journal of Mathematics
Volumen227
N.º1
DOI
EstadoPublicada - 1 ago. 2018

Huella

Profundice en los temas de investigación de 'Sharp convergence rates for averaged nonexpansive maps'. En conjunto forman una huella única.

Citar esto