Semiparametric Bayesian classification with longitudinal markers

Rolando De La Cruz-Mesía, Fernando A. Quintana, Peter Müller

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

38 Citas (Scopus)

Resumen

We analyse data from a study involving 173 pregnant women. The data are observed values of the β human chorionic gonadotropin hormone measured during the first 80 days of gestational age, including from one up to six longitudinal responses for each woman. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from data that are available at the early stages of pregnancy. We achieve the desired classification with a semiparametric hierarchical model. Specifically, we consider a Dirichlet process mixture prior for the distribution of the random effects in each group. The unknown random-effects distributions are allowed to vary across groups but are made dependent by using a design vector to select different features of a single underlying random probability measure. The resulting model is an extension of the dependent Dirichlet process model, with an additional probability model for group classification. The model is shown to perform better than an alternative model which is based on independent Dirichlet processes for the groups. Relevant posterior distributions are summarized by using Markov chain Monte Carlo methods.

Idioma originalInglés
Páginas (desde-hasta)119-137
Número de páginas19
PublicaciónJournal of the Royal Statistical Society. Series C: Applied Statistics
Volumen56
N.º2
DOI
EstadoPublicada - mar. 2007

Huella

Profundice en los temas de investigación de 'Semiparametric Bayesian classification with longitudinal markers'. En conjunto forman una huella única.

Citar esto