Schwarzian derivatives for pluriharmonic mappings

Iason Efraimidis, Álvaro Ferrada-Salas, Rodrigo Hernández, Rodrigo Vargas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

A pre-Schwarzian and a Schwarzian derivative for locally univalent pluriharmonic mappings in Cn are introduced. Basic properties such as the chain rule, multiplicative invariance and affine invariance are proved for these operators. It is shown that the pre-Schwarzian is stable only with respect to rotations of the identity. A characterization is given for the case when the pre-Schwarzian derivative is holomorphic. Furthermore, it is shown that if the Schwarzian derivative of a pluriharmonic mapping vanishes then the analytic part of this mapping is a Möbius transformation. Some observations are made related to the dilatation of pluriharmonic mappings and to the dilatation of their affine transformations, revealing differences between the theories in the plane and in higher dimensions. An example is given that rules out the possibility for a shear construction theorem to hold in Cn, for n≥2.

Idioma originalInglés
Número de artículo124716
PublicaciónJournal of Mathematical Analysis and Applications
Volumen495
N.º1
DOI
EstadoPublicada - 1 mar. 2021

Huella

Profundice en los temas de investigación de 'Schwarzian derivatives for pluriharmonic mappings'. En conjunto forman una huella única.

Citar esto