Robust self-organizing maps

Hector Allende, Sebastian Moreno, Cristian Rogel, Rodrigo Salas

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

9 Citas (Scopus)

Resumen

The Self Organizing Map (SOM) model is an unsupervised learning neural network that has been successfully applied as a data mining tool. The advantages of the SOMs are that they preserve the topology of the data space, they project high dimensional data to a lower dimension representation scheme, and are able to find similarities in the data. However, the learning algorithm of the SOM is sensitive to the presence of noise and outliers as we will show in this paper. Due to the influence of the outliers in the learning process, some neurons (prototypes) of the ordered map get located far from the majority of data, and therefore, the network will not effectively represent the topological structure of the data under study. In this paper, we propose a variant to the learning algorithm that is robust under the presence of outliers in the data by being resistant to these deviations. We call this algorithm Robust SOM (RSOM). We will illustrate our technique on synthetic and real data sets.

Idioma originalInglés
Título de la publicación alojadaLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditoresAlberto Sanfeliu, Jose Francisco Martinez-Trinidad, Jesus Ariel Carrasco-Ochoa
EditorialSpringer Verlag
Páginas179-186
Número de páginas8
ISBN (versión impresa)3540235272
DOI
EstadoPublicada - 2004
Publicado de forma externa

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen3287
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Huella

Profundice en los temas de investigación de 'Robust self-organizing maps'. En conjunto forman una huella única.

Citar esto