Robust Bayesian fitting of 3D morphable model

Claudia Arellano, Rozenn Dahyot

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

We propose to fit automatically a 3D morphable face model to a point cloud captured with a RGB-D sensor. Both data sets, the shape model and the target point cloud are modelled as two probability density functions (pdfs). Rigid registration (rotation and translation) and reconstruction on the model is performed by minimising the Euclidean distance between these two pdfs augmented with a multivariate Gaussian prior. Our resulting process is robust and it does not require point to point correspondence. Experimental results on synthetic and real data illustrates the performance of this novel approach.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 10th European Conference on Visual Media Production, CVMP 2013
DOI
EstadoPublicada - 2013
Publicado de forma externa
Evento10th European Conference on Visual Media Production, CVMP 2013 - London, Reino Unido
Duración: 6 nov. 20137 nov. 2013

Serie de la publicación

NombreACM International Conference Proceeding Series

Conferencia

Conferencia10th European Conference on Visual Media Production, CVMP 2013
País/TerritorioReino Unido
CiudadLondon
Período6/11/137/11/13

Huella

Profundice en los temas de investigación de 'Robust Bayesian fitting of 3D morphable model'. En conjunto forman una huella única.

Citar esto