Reinforcement learning with restrictions on the action set

Mario Bravo, Mathieu Faure

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

Consider a two-player normal-form game repeated over time. We introduce an adaptive learning procedure, where the players only observe their own realized payoff at each stage. We assume that agents do not know their own payoff function and have no information on the other player. Furthermore, we assume that they have restrictions on their own actions such that, at each stage, their choice is limited to a subset of their action set. We prove that the empirical distributions of play converge to the set of Nash equilibria for zero-sum and potential games, and games where one player has two actions.

Idioma originalInglés
Páginas (desde-hasta)287-312
Número de páginas26
PublicaciónSIAM Journal on Control and Optimization
Volumen53
N.º1
DOI
EstadoPublicada - 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Reinforcement learning with restrictions on the action set'. En conjunto forman una huella única.

Citar esto