Real-time model-based fault detection and diagnosis for alternators and induction motors

Daniel F. Leite, Michel B. Hell, Patrícia H. Diez, Bernardo S.L. Ganglio, Lucas O. Nascimento, Pyramo Costa

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

9 Citas (Scopus)

Resumen

This paper describes a real-time model-based fault detection and diagnosis software. The Electric Machines Diagnosis System (EMDS) covers field winding shorted-turns fault in alternators and stator windings shorted-turns fault in induction motors. The EMDS has a modular architecture. The modules include: acquisition and data treatment; well-known parameters estimation algorithms, such as Recursive Least Squares (RLS) and Extended Kalman Filter (EKF); dynamic models for faults simulation; faults detection and identification tools, such as M.L.P. and S.O.M. neural networks and Fuzzy C-Means (FCM) technique. The modules working together detect possible faulty conditions of various machines working in parallel through routing. A fast, safe and efficient data manipulation requires a great DataBase Managing System (DBMS) performance. In our experiment, the EMDS real-time operation demonstrated that the proposed system could efficiently and effectively detect abnormal conditions resulting in lower-cost maintenance for the company.

Idioma originalInglés
Título de la publicación alojadaProceedings of 2007 IEEE International Electric Machines and Drives Conference, IEMDC 2007
Páginas202-207
Número de páginas6
DOI
EstadoPublicada - 2007
Publicado de forma externa
EventoIEEE International Electric Machines and Drives Conference, IEMDC 2007 - Antalya, Turquía
Duración: 3 may. 20075 may. 2007

Serie de la publicación

NombreProceedings of IEEE International Electric Machines and Drives Conference, IEMDC 2007
Volumen1

Conferencia

ConferenciaIEEE International Electric Machines and Drives Conference, IEMDC 2007
País/TerritorioTurquía
CiudadAntalya
Período3/05/075/05/07

Huella

Profundice en los temas de investigación de 'Real-time model-based fault detection and diagnosis for alternators and induction motors'. En conjunto forman una huella única.

Citar esto