Quantitative Analysis of Visual Representation of Sign Elements in COVID-19 Context

María Jesús Cano-Martínez, Miguel Carrasco, Joaquín Sandoval, César González-Martín

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Visual representation as a means of communication uses elements to build a narrative. We propose using computer analysis to perform a quantitative analysis of the elements used in the visual creations that have been produced in reference to the epidemic, using 927 images compiled from The Covid Art Museum's Instagram account. This process has been carried out with techniques based on deep learning to detect objects contained in each study image. The research reveals the elements that are repeated in images to create narratives and the relations of association that are established in the sample. The predominant discourses in the sample do not show concern for the effects of illness. On the contrary, the impact and effects of confinement, through the prominent presence of elements such as human figures, windows, and buildings, are the most expressed experiences in the creations analyzed.

Idioma originalInglés
Páginas (desde-hasta)31-51
Número de páginas21
PublicaciónEmpirical Studies of the Arts
Volumen41
N.º1
DOI
EstadoPublicada - ene. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Quantitative Analysis of Visual Representation of Sign Elements in COVID-19 Context'. En conjunto forman una huella única.

Citar esto