TY - JOUR
T1 - Predicting out-of-stock using machine learning
T2 - An application in a retail packaged foods manufacturing company
AU - Andaur, Juan Manuel Rozas
AU - Ruz, Gonzalo A.
AU - Goycoolea, Marcos
N1 - Funding Information:
The authors were supported by CONICYT-Chile under grant CONICYT Doctoral scholarship (2015-21151606) (J.M.R.A.), ANID FONDECYT grant number 1180706 (G.A.R), ANID PIA/BASAL FB0002 (G.A.R.), and Centro de Modelamiento Matemático (CMM), FB210005, BASAL funds for centers of excellence from ANID-Chile (M.G.).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - For decades, Out-of-Stock (OOS) events have been a problem for retailers and manufacturers. In grocery retailing, an OOS event is used to characterize the condition in which customers do not find a certain commodity while attempting to buy it. This paper focuses on addressing this problem from a manufacturer’s perspective, conducting a case study in a retail packaged foods manufacturing company located in Latin America. We developed two machine learning based systems to detect OOS events automatically. The first is based on a single Random Forest classifier with balanced data, and the second is an ensemble of six different classification algorithms. We used transactional data from the manufacturer information system and physical audits. The novelty of this work is our use of new predictor variables of OOS events. The system was successfully implemented and tested in a retail packaged foods manufacturer company. By incorporating the new predictive variables in our Random Forest and Ensemble classifier, we were able to improve their system’s predictive power. In particular, the Random Forest classifier presented the best performance in a real-world setting, achieving a detection precision of 72% and identifying 68% of the total OOS events. Finally, the incorporation of our new predictor variables allowed us to improve the performance of the Random Forest by 0.24 points in the F-measure.
AB - For decades, Out-of-Stock (OOS) events have been a problem for retailers and manufacturers. In grocery retailing, an OOS event is used to characterize the condition in which customers do not find a certain commodity while attempting to buy it. This paper focuses on addressing this problem from a manufacturer’s perspective, conducting a case study in a retail packaged foods manufacturing company located in Latin America. We developed two machine learning based systems to detect OOS events automatically. The first is based on a single Random Forest classifier with balanced data, and the second is an ensemble of six different classification algorithms. We used transactional data from the manufacturer information system and physical audits. The novelty of this work is our use of new predictor variables of OOS events. The system was successfully implemented and tested in a retail packaged foods manufacturer company. By incorporating the new predictive variables in our Random Forest and Ensemble classifier, we were able to improve their system’s predictive power. In particular, the Random Forest classifier presented the best performance in a real-world setting, achieving a detection precision of 72% and identifying 68% of the total OOS events. Finally, the incorporation of our new predictor variables allowed us to improve the performance of the Random Forest by 0.24 points in the F-measure.
KW - Classification algorithms
KW - Decision support
KW - Imbalance data
KW - Machine learning
KW - Out of stock
KW - Retail industry application
KW - Supply chain management
UR - http://www.scopus.com/inward/record.url?scp=85118942699&partnerID=8YFLogxK
U2 - 10.3390/electronics10222787
DO - 10.3390/electronics10222787
M3 - Article
AN - SCOPUS:85118942699
SN - 2079-9292
VL - 10
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 22
M1 - 2787
ER -