Predicting Next Phases of Multi-Stage Network Attacks: A Comparative Study of Statistical and Deep-Learning Models

Antonia Severín, Claudio Canales, Romina Torres, César Roudergue, Rodrigo Salas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Multi-Stage Network Attacks (MSNAs) are complex, coordinated sequences of malicious activities that can unfold over extended periods-lasting hours, days, or even months. Detecting and mitigating these attacks is challenging due to their prolonged nature, and the cost of defense increases significantly depending on the stage at which the attack is detected. Organizations often face multiple concurrent MSNAs, and limited resources necessitate a strategic approach to prioritize threats, particularly those closest to their final stages. This study investigates existing methodologies for predicting the next phase of an already detected MSNA attack. We evaluate three distinct models—Hidden Markov Models (HMM), Random Forest (RF), and Long Short-Term Memory (LSTM) networks—using two well-known datasets, DARPA and CTF22, to analyze attack sequences and intrusion detection system (IDS) alert data. Our comparative analysis of the models’ predictive performance, based on the F1 score, shows that HMM performed best (67.5%) on the DARPA dataset, while RF excelled on the CTF dataset (75.1%). These findings provide valuable insights for prioritizing responses to critical network threats and improving the strategic allocation of defensive resources.

Idioma originalInglés
Título de la publicación alojadaProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 27th Iberoamerican Congress, CIARP 2024, Proceedings
EditoresRuber Hernández-García, Ricardo J. Barrientos, Sergio A. Velastin
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas219-232
Número de páginas14
ISBN (versión impresa)9783031766039
DOI
EstadoPublicada - 2025
Publicado de forma externa
Evento27th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2024 - Talca, Chile
Duración: 26 nov. 202429 nov. 2024

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen15369 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia27th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2024
País/TerritorioChile
CiudadTalca
Período26/11/2429/11/24

Huella

Profundice en los temas de investigación de 'Predicting Next Phases of Multi-Stage Network Attacks: A Comparative Study of Statistical and Deep-Learning Models'. En conjunto forman una huella única.

Citar esto