Point-width and Max-CSPs

Clement Carbonnel, Miguel Romero, Stanislav Zivny

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

The complexity of (unbounded-arity) Max-CSPs under structural restrictions is poorly understood. The two most general hypergraph properties known to ensure tractability of Max-CSPs, β -acyclicity and bounded (incidence) MIM-width, are incomparable and lead to very different algorithms. We introduce the framework of point decompositions for hypergraphs and use it to derive a new sufficient condition for the tractability of (structurally restricted) Max-CSPs, which generalises both bounded MIM-width and β -acyclicity. On the way, we give a new characterisation of bounded MIM-width and discuss other hypergraph properties which are relevant to the complexity of Max-CSPs, such as β -hypertreewidth.

Idioma originalInglés
Título de la publicación alojada2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728136080
DOI
EstadoPublicada - jun. 2019
Publicado de forma externa
Evento34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019 - Vancouver, Canadá
Duración: 24 jun. 201927 jun. 2019

Serie de la publicación

NombreProceedings - Symposium on Logic in Computer Science
Volumen2019-June
ISSN (versión impresa)1043-6871

Conferencia

Conferencia34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019
País/TerritorioCanadá
CiudadVancouver
Período24/06/1927/06/19

Huella

Profundice en los temas de investigación de 'Point-width and Max-CSPs'. En conjunto forman una huella única.

Citar esto