Optimal operator preconditioning for Galerkin boundary element methods on 3-dimensional screens

Ralf Hiptmair, Carlos Jerez-Hanckes, Carolina Urzúa-Torres

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)

Resumen

We consider first-kind weakly singular and hypersingular boundary integral operators for the Laplacian on screens in R3 and their Galerkin discretization by means of low-order piecewise polynomial boundary elements. For the resulting linear systems of equations we propose novel Calderón-type preconditioners based on (i) new boundary integral operators, which provide the exact inverses of the weakly singular and hypersingular operators on flat disks, and (ii) stable duality pairings relying on dual meshes. On screens obtained as images of the unit disk under bi-Lipschitz transformations, this approach achieves condition numbers uniformly bounded in the meshwidth even on locally refined meshes. Comprehensive numerical tests also confirm its excellent preasymptotic performance.

Idioma originalInglés
Páginas (desde-hasta)834-857
Número de páginas24
PublicaciónSIAM Journal on Numerical Analysis
Volumen58
N.º1
DOI
EstadoPublicada - 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Optimal operator preconditioning for Galerkin boundary element methods on 3-dimensional screens'. En conjunto forman una huella única.

Citar esto