On the Reliability of Dynamical Stochastic Binary Systems

Guido Lagos, Pablo Romero

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In system reliability analysis, the goal is to understand the correct operation of a multi-component on-off system, i.e., each component can be either working or not, and each component fails randomly. The reliability of a system is the probability of correct operation. Since the reliability evaluation is a hard problem, the scientific literature offers both efficient reliability estimations and exact exponential-time evaluation methods. In this work, the concept of Dynamical Stochastic Binary Systems (DSBS) is introduced. Samaniego signature provides a method to find the reliability and Mean-Time-to-Failure of a DSBS. However, we formally prove that the computation of Samaniego signature belongs to the hierarchy of # P -Complete problems. The interplay between static and dynamic models is here studied. Two methodologies for the reliability evaluation are presented. A discussion of its applications to structural reliability and analysis of dependent failures in the novel setting of DSBS is also included.

Idioma originalInglés
Título de la publicación alojadaMachine Learning, Optimization, and Data Science - 6th International Conference, LOD 2020, Revised Selected Papers
EditoresGiuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Giorgio Jansen, Vincenzo Sciacca, Panos Pardalos, Giovanni Giuffrida, Renato Umeton
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas516-527
Número de páginas12
ISBN (versión impresa)9783030645823
DOI
EstadoPublicada - 2020
Publicado de forma externa
Evento6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020 - Siena, Italia
Duración: 19 jul. 202023 jul. 2020

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen12565 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020
País/TerritorioItalia
CiudadSiena
Período19/07/2023/07/20

Huella

Profundice en los temas de investigación de 'On the Reliability of Dynamical Stochastic Binary Systems'. En conjunto forman una huella única.

Citar esto