On the rate of convergence of Krasnosel’skiĭ-Mann iterations and their connection with sums of Bernoullis

R. Cominetti, J. A. Soto, J. Vaisman

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

38 Citas (Scopus)

Resumen

In this paper we establish an estimate for the rate of convergence of the Krasnosel’skiĭ-Mann iteration for computing fixed points of non-expansive maps. Our main result settles the Baillon-Bruck conjecture [3] on the asymptotic regularity of this iteration. The proof proceeds by establishing a connection between these iterates and a stochastic process involving sums of non-homogeneous Bernoulli trials. We also exploit a new Hoeffdingtype inequality to majorize the expected value of a convex function of these sums using Poisson distributions.

Idioma originalInglés
Páginas (desde-hasta)757-772
Número de páginas16
PublicaciónIsrael Journal of Mathematics
Volumen199
N.º2
DOI
EstadoPublicada - 1 mar. 2014

Huella

Profundice en los temas de investigación de 'On the rate of convergence of Krasnosel’skiĭ-Mann iterations and their connection with sums of Bernoullis'. En conjunto forman una huella única.

Citar esto