Resumen
In this paper we establish an estimate for the rate of convergence of the Krasnosel’skiĭ-Mann iteration for computing fixed points of non-expansive maps. Our main result settles the Baillon-Bruck conjecture [3] on the asymptotic regularity of this iteration. The proof proceeds by establishing a connection between these iterates and a stochastic process involving sums of non-homogeneous Bernoulli trials. We also exploit a new Hoeffdingtype inequality to majorize the expected value of a convex function of these sums using Poisson distributions.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 757-772 |
Número de páginas | 16 |
Publicación | Israel Journal of Mathematics |
Volumen | 199 |
N.º | 2 |
DOI | |
Estado | Publicada - 1 mar. 2014 |