On the Importance of Feedback for Categorization: Revisiting Category Learning Experiments Using an Adaptive Filter Model

Nicolás Marchant, Sergio E. Chaigneau

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle three learning tasks that pose challenges to an associative view of category learning. Across three computational simulations, we show that the ALF is in fact able to make the predictions that seemed problematic. Notably, in our simulations we use exactly the same model and specifications, attesting to the generality of our account. We discuss the consequences of our findings for the category learning literature.

Idioma originalInglés
Páginas (desde-hasta)295-306
Número de páginas12
PublicaciónJournal of experimental psychology. Animal learning and cognition
Volumen48
N.º4
DOI
EstadoPublicada - 2022
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On the Importance of Feedback for Categorization: Revisiting Category Learning Experiments Using an Adaptive Filter Model'. En conjunto forman una huella única.

Citar esto