On-the-fly generation of multi-robot team formation strategies based on game conditions

John Atkinson, Dario Rojas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

This paper describes a new model to automatically generating dynamic formation strategies for robotic soccer applications based on game conditions, regarded to as favorable or unfavorable for a robotic team. Decisions are distributedly computed by the players of a multi-agent team. A game policy is defined and applied by a human coach who establishes the attitude of the team for defending or attacking. A simple neural net model is applied using current and previous game experience to classify the game's parameters so that the new game conditions can be determined so that a robotic team can modify its strategy on-the-fly. Experiments and results of the proposed model for a robotic soccer team show the promise of the approach.

Idioma originalInglés
Páginas (desde-hasta)6082-6090
Número de páginas9
PublicaciónExpert Systems with Applications
Volumen36
N.º3 PART 2
DOI
EstadoPublicada - abr. 2009
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On-the-fly generation of multi-robot team formation strategies based on game conditions'. En conjunto forman una huella única.

Citar esto