On the error estimates for the finite element approximation of a class of boundary optimal control systems

Pablo Gamallo, Erwin Hernández, Andrés Peters

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this article, we consider an application of the abstract error estimate for a class of optimal control systems described by a linear partial differential equation (as stated in Numer. Funct. Anal. Optim. 2009; 30:523-547). The control is applied at the boundary and we consider both, Neumann and Dirichlet optimal control problems. Finite element methods are proposed to approximate the optimal control considering an approximation of the variational inequality resulting from the optimality conditions; this approach is known as classical one. We obtain optimal order error estimates for the control variable and numerical examples, taken from the literature, are included to illustrate the results.

Idioma originalInglés
Páginas (desde-hasta)383-396
Número de páginas14
PublicaciónNumerical Functional Analysis and Optimization
Volumen32
N.º4
DOI
EstadoPublicada - abr. 2011

Huella

Profundice en los temas de investigación de 'On the error estimates for the finite element approximation of a class of boundary optimal control systems'. En conjunto forman una huella única.

Citar esto