ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE

Héctor Araya, Natalia Bahamonde, Lisandro Fermín, Tania Roa, Soledad Torres

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this study, we prove the strong consistency of the least squares estimator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Additionally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H.

Idioma originalInglés
Páginas (desde-hasta)1-26
Número de páginas26
PublicaciónStatistica Sinica
Volumen33
N.º1
DOI
EstadoPublicada - ene. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE'. En conjunto forman una huella única.

Citar esto