ON THE CONSISTENCY OF LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE JITTERED CASE

Héctor Araya, Natalia Bahamonde, Lisandro Fermín, Tania Roa, Soledad Torres

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

In numerous applications, data are observed at random times. Our main purpose is to study a model observed at random times that incorporates a long-memory noise process with a fractional Brownian Hurst exponent H. We propose a least squares estimator in a linear regression model with long-memory noise and a random sampling time called “jittered sampling”. Specifically, there is a fixed sampling rate 1/N, contaminated by an additive noise (the jitter) and governed by a probability density function supported in [0,1/N]. The strong consistency of the estimator is established, with a convergence rate depending on N and the Hurst exponent. A Monte Carlo analysis supports the relevance of the theory and produces additional insights, with several levels of long-range dependence (varying the Hurst index) and two different jitter densities.

Idioma originalInglés
Páginas (desde-hasta)331-351
Número de páginas21
PublicaciónStatistica Sinica
Volumen33
N.º1
DOI
EstadoPublicada - ene. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'ON THE CONSISTENCY OF LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE JITTERED CASE'. En conjunto forman una huella única.

Citar esto