Resumen
Let S ℤn satisfy the property that conv(S) n ℤn = S. Then a convex set K is called an S-free convex set if int(K) S = Ø. A maximal S-free convex set is an S-free convex set that is not properly contained in any S-free convex set. We show that maximal S-free convex sets are polyhedra. This result generalizes a result of Basu et al. [SIAM J. Discrete Math., 24 (2010), pp. 158- 168] for the case where S is the set of integer points in a rational polyhedron and a result of Lovász [Mathematical Programming: Recent Developments and Applications, M. Iri and K. Tanabe, eds., Kluwer, Dordrecht, 1989, pp. 177-210] and Basu et al. [Math. Oper. Res., 35 (2010), pp. 704-720] for the case where S is the set of integer points in some affine subspace of Rn.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 379-393 |
Número de páginas | 15 |
Publicación | SIAM Journal on Discrete Mathematics |
Volumen | 25 |
N.º | 1 |
DOI | |
Estado | Publicada - 2011 |
Publicado de forma externa | Sí |