On local linearization method for stochastic differential equations driven by fractional Brownian motion

Héctor Araya, Jorge A. León, Soledad Torres

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We propose a local linearization scheme to approximate the solutions of non-autonomous stochastic differential equations driven by fractional Brownian motion with Hurst parameter (Formula presented.) Toward this end, we approximate the drift and diffusion terms by means of a first-order Taylor expansion. This becomes the original equation into a local fractional linear stochastic differential equation, whose solution can be figured out explicitly. As in the Brownian motion case (i.e., H = 1/2), the rate of convergence, in our case, is twice the one of the Euler scheme. Numerical examples are given to demonstrate the performance of the method.

Idioma originalInglés
Páginas (desde-hasta)55-90
Número de páginas36
PublicaciónStochastic Analysis and Applications
Volumen39
N.º1
DOI
EstadoPublicada - 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'On local linearization method for stochastic differential equations driven by fractional Brownian motion'. En conjunto forman una huella única.

Citar esto