TY - JOUR
T1 - Observability of planet-disc interactions in CO kinematics
AU - Pérez, Sebastián
AU - Casassus, S.
AU - Benítez-Llambay, P.
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/10/11
Y1 - 2018/10/11
N2 - Empirical evidence of planets in gas-rich circumstellar discs is required to constrain giant planet formation theories. Here we study the kinematic patterns which arise from planet- disc interactions and their observability in CO rotational emission lines. We perform 3D hydrodynamical simulations of single giant planets and predict the emergent intensity field with radiative transfer. Pressure gradients at planet-carved gaps, spiral wakes, and vortices bear strong kinematic counterparts. The isovelocity contours in the CO(2-1) line centroids vo reveal large-scale perturbations, corresponding to abrupt transitions from below sub-Keplerian to super-Keplerian rotation along with radial and vertical flows. The increase in line optical depth at the edge of the gap also modulates vo, but this is a mild effect compared to the dynamical imprint of the planet-disc interaction. The large-scale deviations from the Keplerian rotation thus allow the planets to be indirectly detected via the first moment maps of molecular gas tracers, at Atacama Large Millimetre/submillimetre Array angular resolutions. The strength of these deviations depends on the mass of the perturber. This initial study paves the way to eventually determine the mass of the planet by comparison with more detailed models.
AB - Empirical evidence of planets in gas-rich circumstellar discs is required to constrain giant planet formation theories. Here we study the kinematic patterns which arise from planet- disc interactions and their observability in CO rotational emission lines. We perform 3D hydrodynamical simulations of single giant planets and predict the emergent intensity field with radiative transfer. Pressure gradients at planet-carved gaps, spiral wakes, and vortices bear strong kinematic counterparts. The isovelocity contours in the CO(2-1) line centroids vo reveal large-scale perturbations, corresponding to abrupt transitions from below sub-Keplerian to super-Keplerian rotation along with radial and vertical flows. The increase in line optical depth at the edge of the gap also modulates vo, but this is a mild effect compared to the dynamical imprint of the planet-disc interaction. The large-scale deviations from the Keplerian rotation thus allow the planets to be indirectly detected via the first moment maps of molecular gas tracers, at Atacama Large Millimetre/submillimetre Array angular resolutions. The strength of these deviations depends on the mass of the perturber. This initial study paves the way to eventually determine the mass of the planet by comparison with more detailed models.
KW - Hydrodynamics
KW - Methods: numerical
KW - Planet- disc interactions
KW - Planets and satellites: detection
KW - Protoplanetary discs
UR - http://www.scopus.com/inward/record.url?scp=85054725502&partnerID=8YFLogxK
U2 - 10.1093/mnrasl/sly109
DO - 10.1093/mnrasl/sly109
M3 - Article
AN - SCOPUS:85054725502
SN - 1745-3933
VL - 480
SP - L12-L17
JO - Monthly Notices of the Royal Astronomical Society: Letters
JF - Monthly Notices of the Royal Astronomical Society: Letters
IS - 1
ER -