Non-linear random effects model for multivariate responses with missing data

Guillermo Marshall, Rolando De la Cruz-Mesía, Anna E. Barón, James H. Rutledge, Gary O. Zerbe

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

35 Citas (Scopus)

Resumen

The use of random-effects models for the analysis of longitudinal data with missing responses has been discussed by several authors. In this paper, we extend the non-linear random-effects model for a single response to the case of multiple responses, allowing for arbitrary patterns of observed and missing data. Parameters for this model are estimated via the EM algorithm and by the first-order approximation available in SAS Proc NLMIXED. The set of equations for this estimation procedure is derived and these are appropriately modified to deal with missing data. The methodology is illustrated with an example using data coming from a study involving 161 pregnant women presenting to a private obstetrics clinic in Santiago, Chile.

Idioma originalInglés
Páginas (desde-hasta)2817-2830
Número de páginas14
PublicaciónStatistics in Medicine
Volumen25
N.º16
DOI
EstadoPublicada - 30 ago. 2006

Huella

Profundice en los temas de investigación de 'Non-linear random effects model for multivariate responses with missing data'. En conjunto forman una huella única.

Citar esto