Multilevel domain uncertainty quantification in computational electromagnetics

Rubén Aylwin, Carlos Jerez-Hanckes, Christoph Schwab, Jakob Zech

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We continue our study [R. Aylwin, C. Jerez-Hanckes, C. Schwab and J. Zech, Domain uncertainty quantification in computational electromagnetics, SIAM/ASA J. Uncertain. Quant. 8 (2020) 301–341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework, mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates free from the so-called curse of dimensionality. Numerical experiments confirm our theoretical results and verify the superiority of the sparse-grid methods.

Idioma originalInglés
Páginas (desde-hasta)877-921
Número de páginas45
PublicaciónMathematical Models and Methods in Applied Sciences
Volumen33
N.º4
DOI
EstadoPublicada - 1 abr. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Multilevel domain uncertainty quantification in computational electromagnetics'. En conjunto forman una huella única.

Citar esto