Model-based clustering for longitudinal data

Rolando De la Cruz-Mesía, Fernando A. Quintana, Guillermo Marshall

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

43 Citas (Scopus)

Resumen

A model-based clustering method is proposed for clustering individuals on the basis of measurements taken over time. Data variability is taken into account through non-linear hierarchical models leading to a mixture of hierarchical models. We study both frequentist and Bayesian estimation procedures. From a classical viewpoint, we discuss maximum likelihood estimation of this family of models through the EM algorithm. From a Bayesian standpoint, we develop appropriate Markov chain Monte Carlo (MCMC) sampling schemes for the exploration of target posterior distribution of parameters. The methods are illustrated with the identification of hormone trajectories that are likely to lead to adverse pregnancy outcomes in a group of pregnant women.

Idioma originalInglés
Páginas (desde-hasta)1441-1457
Número de páginas17
PublicaciónComputational Statistics and Data Analysis
Volumen52
N.º3
DOI
EstadoPublicada - 1 ene. 2008

Huella

Profundice en los temas de investigación de 'Model-based clustering for longitudinal data'. En conjunto forman una huella única.

Citar esto