Resumen
A strong regularity theorem is proved, which shows that the usual constraint qualification conditions ensuring the regularity of the set-valued maps expressing feasibility in optimization problems, are in fact minimal assumptions. These results are then used to derive calculus rules for second-order tangent sets, allowing us in turn to obtain a second-order (Lagrangian) necessary condition for optimality which completes the usual one of positive semidefiniteness on the Hessian of the Lagrangian function.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 265-287 |
Número de páginas | 23 |
Publicación | Applied Mathematics and Optimization |
Volumen | 21 |
N.º | 1 |
DOI | |
Estado | Publicada - ene. 1990 |