TY - GEN
T1 - Maximum entropy context models for ranking biographical answers to open-domain definition questions
AU - Figueroa, Alejandro
AU - Atkinson, John
PY - 2011
Y1 - 2011
N2 - In the context of question-answering systems, there are several strategies for scoring candidate answers to definition queries including centroid vectors, bi-term and context language models. These techniques use only positive examples (i.e., descriptions) when building their models. In this work, a maximum entropy based extension is proposed for context language models so as to account for regularities across non-descriptions mined from web-snippets. Experiments show that this extension outperforms other strategies increasing the precision of the top five ranked answers by more than 5%. Results suggest that web-snippets are a cost-efficient source of non-descriptions, and that some relationships extracted from dependency trees are effective to mine for candidate answer sentences.
AB - In the context of question-answering systems, there are several strategies for scoring candidate answers to definition queries including centroid vectors, bi-term and context language models. These techniques use only positive examples (i.e., descriptions) when building their models. In this work, a maximum entropy based extension is proposed for context language models so as to account for regularities across non-descriptions mined from web-snippets. Experiments show that this extension outperforms other strategies increasing the precision of the top five ranked answers by more than 5%. Results suggest that web-snippets are a cost-efficient source of non-descriptions, and that some relationships extracted from dependency trees are effective to mine for candidate answer sentences.
UR - http://www.scopus.com/inward/record.url?scp=80055055237&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:80055055237
SN - 9781577355090
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 1173
EP - 1179
BT - AAAI-11 / IAAI-11 - Proceedings of the 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference
T2 - 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference, AAAI-11 / IAAI-11
Y2 - 7 August 2011 through 11 August 2011
ER -