LQI Control of a Self Balancing Robot: A Numerical Study of the Impact of the Integral Approximation

Luis Severino, Fernando Sanhueza, Andres Peters, Francisco Vargas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This work aims to explore the effects of the integral term in the discrete-time implementation of the LQI controller. To achieve this, a two-wheeled self-balancing robot system is used as a case study, and three types of numerical integration approximations are considered: Backward Euler, Forward Euler, and Tustin. Through simulations, the results obtained with each approximation are compared against the expected continuoustime design. The simulation results demonstrate that while there are no significant differences for small sampling times, the Tustin approximation exhibits notably better performance than the other alternatives as the sampling time increases.

Idioma originalInglés
Título de la publicación alojadaChileCon 2023 - 2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350369533
DOI
EstadoPublicada - 2023
Publicado de forma externa
Evento2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon 2023 - Hybrid, Valdivia, Chile
Duración: 5 dic. 20237 dic. 2023

Serie de la publicación

NombreProceedings - IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon
ISSN (versión impresa)2832-1529
ISSN (versión digital)2832-1537

Conferencia

Conferencia2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, ChileCon 2023
País/TerritorioChile
CiudadHybrid, Valdivia
Período5/12/237/12/23

Huella

Profundice en los temas de investigación de 'LQI Control of a Self Balancing Robot: A Numerical Study of the Impact of the Integral Approximation'. En conjunto forman una huella única.

Citar esto