Least squares estimation for the Ornstein–Uhlenbeck process with small Hermite noise

Héctor Araya, Soledad Torres, Ciprian A. Tudor

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

We consider the problem of the drift parameter estimation for a non-Gaussian long memory Ornstein–Uhlenbeck process driven by a Hermite process. To estimate the unknown parameter, discrete time high-frequency observations at regularly spaced time points and the least squares estimation method are used. By means of techniques based on Wiener chaos and multiple stochastic integrals, the consistency and the limit distribution of the least squares estimator of the drift parameter have been established. To show the computational implementation of the obtained results, different simulation examples are given.

Idioma originalInglés
Páginas (desde-hasta)4745-4766
Número de páginas22
PublicaciónStatistical Papers
Volumen65
N.º7
DOI
EstadoPublicada - sep. 2024
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Least squares estimation for the Ornstein–Uhlenbeck process with small Hermite noise'. En conjunto forman una huella única.

Citar esto