Lagrangians for differential equations of any order

Sergio Hojman, Francisco Pardo, Luis Aulestia, Francisco De Lisa

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In this work the inverse problem of the variational calculus for systems of differential equations of any order is analyzed. It is shown that, if a Lagrangian exists for a given regular system of differential equations, then it can be written as a linear combination of the equations of motion. The conditions that these coefficients must satisfy for the existence of an S-equivalent Lagrangian are also exhibited. A generalization is also made of the concept of Lagrangian symmetries and they are related with constants of motion.

Idioma originalInglés
Páginas (desde-hasta)584-590
Número de páginas7
PublicaciónJournal of Mathematical Physics
Volumen33
N.º2
DOI
EstadoPublicada - 1992

Huella

Profundice en los temas de investigación de 'Lagrangians for differential equations of any order'. En conjunto forman una huella única.

Citar esto