Intrinsic chiral field as vector potential of the magnetic current in the zig-zag lattice of magnetic dipoles

Paula Mellado, Andrés Concha, Kevin Hofhuis, Ignacio Tapia

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

Chiral magnetic insulators manifest novel phases of matter where the sense of rotation of the magnetization is associated with exotic transport phenomena. Effective control of such phases and their dynamical evolution points to the search and study of chiral fields like the Dzyaloshinskii–Moriya interaction. Here we combine experiments, numerics, and theory to study a zig-zag dipolar lattice as a model of an interface between magnetic in-plane layers with a perpendicular magnetization. The zig-zag lattice comprises two parallel sublattices of dipoles with perpendicular easy plane of rotation. The dipolar energy of the system is exactly separable into a sum of symmetric and antisymmetric long-range exchange interactions between dipoles, where the antisymmetric coupling generates a nonlocal Dzyaloshinskii–Moriya field which stabilizes winding textures with the form of chiral solitons. The Dzyaloshinskii–Moriya interaction acts as a vector potential or gauge field of the magnetic current and gives rise to emergent magnetic and electric fields that allow the manifestation of the magnetoelectric effect in the system.

Idioma originalInglés
Número de artículo1245
PublicaciónScientific Reports
Volumen13
N.º1
DOI
EstadoPublicada - dic. 2023
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Intrinsic chiral field as vector potential of the magnetic current in the zig-zag lattice of magnetic dipoles'. En conjunto forman una huella única.

Citar esto