Interacting quantum and classical waves: Resonant and non-resonant energy transfer to electrons immersed in an intense electromagnetic wave

Swadesh M. Mahajan, Felipe A. Asenjo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Dynamics of electrons subjected to a constant amplitude classical electromagnetic (EM) wave is investigated as a fundamental, representative problem in the physics of interacting quantum and classical waves. In the nonrelativistic regime (electrons as Schrödinger waves), the electron energy acquires a constant and a time dependent part. Driven by EM waves, both parts scale strongly with the amplitude, but we expect no resonant enhancement since the parallel electron "speed"of nonrelativistic electrons could never match the wave phase velocity. In the relativistic regime (electron as a Klein-Gordon wave), however, a class of electron waves (with parallel speed matching the EM phase speed) are resonantly excited to extremely high energies. Such a direct resonant energy transfer from intense electromagnetic waves constitutes a mechanism that could, in principle, power the most energetic of cosmic rays (this mechanism will work on protons just as well). Some predictions of the theory will, hopefully, be tested in laboratory laser experiments. The nonrelativistic calculations will also be examined in the context of recent experiments using photon-induced near-field electron microscopy in detail.

Idioma originalInglés
Número de artículo022107
PublicaciónPhysics of Plasmas
Volumen29
N.º2
DOI
EstadoPublicada - 1 feb. 2022
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Interacting quantum and classical waves: Resonant and non-resonant energy transfer to electrons immersed in an intense electromagnetic wave'. En conjunto forman una huella única.

Citar esto