Incremental Gaussian granular fuzzy modeling applied to hurricane track forecasting

Eduardo A. Soares, Heloisa A. Camargo, Suzana J. Camargo, Daniel F. Leite

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

11 Citas (Scopus)

Resumen

This paper presents a Gaussian fuzzy set-based evolving modeling method, FBeM-G, to predict tropical cyclone tracks 6 hours in advance. FBeM-G summarizes similar data into Gaussian granules evolved from a sequence of data. It uses a recursive learning algorithm to update its parameters and structure over time and therefore is able to cope with nonstationarities. Past values of latitude, longitude, maximum sustained wind, pressure and wind radii in different quadrants of the Katrina, Sandy and Wilma tropical cyclones were obtained from the 'best track' analysis provided by the National Hurricane Center (NOAA). An ensemble of cloud-based and fuzzy models was considered to compare the estimated tracks. FBeM-G provided more accurate 6-hourly track estimates using a smaller number of local models and parameters. Although less accurate, longer-term estimates given by the ensemble approach became closer to those provided by FBeM-G. An outer approximation of the pointwise track prediction is a particular characteristic of the method that is useful to determine risk areas and actions to be taken.

Idioma originalInglés
Título de la publicación alojada2018 IEEE International Conference on Fuzzy Systems, FUZZ 2018 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781509060207
DOI
EstadoPublicada - 12 oct. 2018
Publicado de forma externa
Evento2018 IEEE International Conference on Fuzzy Systems, FUZZ 2018 - Rio de Janeiro, Brasil
Duración: 8 jul. 201813 jul. 2018

Serie de la publicación

NombreIEEE International Conference on Fuzzy Systems
Volumen2018-July
ISSN (versión impresa)1098-7584

Conferencia

Conferencia2018 IEEE International Conference on Fuzzy Systems, FUZZ 2018
País/TerritorioBrasil
CiudadRio de Janeiro
Período8/07/1813/07/18

Huella

Profundice en los temas de investigación de 'Incremental Gaussian granular fuzzy modeling applied to hurricane track forecasting'. En conjunto forman una huella única.

Citar esto